13 mayo 2007

A ver que pasa

05 abril 2007

historia del hardware

La historia del hardware comprende el surgimiento de herramientas en la antigüedad para facilitar los cálculos, su mejora, cambios, hasta la aparición del ordenador digital en el siglo XX.
Tabla de contenidos
[ocultar]

* 1 Primeros dispositivos
* 2 Primeras calculadoras mecánicas (siglo XVII)
* 3 Siglo XIX
o 3.1 Telar de Jacquard
o 3.2 Máquina diferencial y analítica
o 3.3 Máquina tabuladora
* 4 1900-1940: computadoras analógicas
* 5 Siglo XX: primeras computadoras electrónicas
* 6 Generaciones de computadoras
* 7 Texto de titular
o 7.1 Primera Generación
o 7.2 Segunda Generación
o 7.3 Tercera Generación
o 7.4 Cuarta Generación
o 7.5 La Quinta Generación
* 8 Enlaces externos

[editar] Primeros dispositivos
Ábaco
Ábaco

Seguramente fue el ábaco el primer dispositivo mecánico utilizado para el cálculo y aritmética básica. Anteriormente se habían utilizado piedras, palos y elementos de diferentes tamaños para representar números, y así realizar operaciones, pero el ábaco es el primer intento de máquina para calcular. Su origen se remonta a China hacia el 2500 adC y tal fue su efectividad y repercusión que hoy en día siguen construyéndose, aunque no para su uso como antaño.

[editar] Primeras calculadoras mecánicas (siglo XVII)

En 1623 Wilhelm Schickard construyó la primera calculadora mecánica y por ello se le considera el padre de la era del cómputo. Como su máquina usaba piezas de relojería (como dientes y engranajes), también se la llamó "reloj de cálculo". Su amigo Johannes Kepler, quien revolucionó la astronomía, la puso en funcionamiento y la utilizó.

En el año 1633, un clérigo inglés, de nombre Willian Oughtred, inventó un dispositivo de cálculo basado en los logaritmos de Napier, al cual denominó Círculos de Proporción.

Este instrumento llegó a ser conocido como la regla de cálculo, que se ha usado hasta el siglo XX, cuando llegó la calculadora electrónica portátil. La regla de cálculo consiste en un conjunto de reglas o discos deslizantes, que tienen marcas en escala logarítmica. Debido a sus propiedades, permite obtener calcular productos y cocientes haciendo sólo sumas y restas de longitudes.
Blaise Pascal
Blaise Pascal

En la Francia del siglo XVII, Blaise Pascal con sólo 19 años inventó la primera calculadora del mundo, la Pascalina. Era una pequeña caja de madera bastante incómoda que tenía en la tapa una hilera de discos numerados, como los del teléfono (que tardaría un siglo más en inventarse), con los agujeros para introducir los dedos y hacerlos girar. Cada disco tenía una ventanilla, y había toda una hilera de ventanillas bajo la hilera de discos: de derecha a izquierda se alineaban las unidades, decenas, centenas, etc.

Cuando una rueda daba una vuelta completa, avanzaba la otra rueda situada a su izquierda. Las ventanillas correspondientes a cada unidad daban la respuesta buscada.

En conjunto, el engranaje proporcionaba un mecanismo de respuesta idéntico al resultado que se puede obtener empleando la aritmética. No obstante, la Pascalina tenía varios inconvenientes; el principal era que sólo el mismo Pascal era capaz de arreglarla.

En 1670 el filósofo y matemático alemán Gottfried Wilhelm Leibniz perfeccionó esta máquina e inventó una que también podía multiplicar. A pesar de ello, las limitaciones técnicas de la época jugaron en su contra. Leibniz también describió el sistema binario, un ingrediente central para todas las computadoras modernas. Sin embargo, hacia los años 1940s, muchos diseños subsecuentes (incluyendo la máquina de Babbage de los años 1800s e incluso la ENIAC de 1945) fueron basados en el tan difícil de implementar sistema decimal.

[editar] Siglo XIX

[editar] Telar de Jacquard

En 1801, el inventor francés Joseph Marie Jacquard diseñó un telar que no necesitaba adaptarse mecánicamente a cada diseño a tejer, sino que usaba unas delgadas placas de madera perforadas que representaban el patrón. Se conoce como el telar de Jacquard.

[editar] Máquina diferencial y analítica
Parte de la máquina diferencial de Babbage
Parte de la máquina diferencial de Babbage

También en el siglo XIX el matemático e inventor británico Charles Babbage elaboró los principios de la computadora digital moderna (programable y de propósito general). Este noble inglés usaba la pascalina para sus cálculos pero le resultaba muy incómoda, dado que no hacía nada por sí sola; había que indicarle los números y las operaciones cada vez. Un día al ver un telar mecánico que confeccionaba un punto escocés por sí solo, sin necesidad de que hubiese alguien allí dándole indicaciones cada vez, tuvo una idea. Los telares estaban dirigidos por cintas perforadas. Así que Babbage, copiando al telar, inventó su propia calculadora con cintas perforadas.

Luego inventó una serie de máquinas, como la máquina diferencial, diseñadas para solucionar problemas matemáticos complejos. Muchos historiadores consideran a Babbage y a su socia, la matemática británica Augusta Ada Byron (1815-1852), hija del poeta inglés Lord Byron, como a los verdaderos inventores de la computadora digital moderna.

La tecnología de aquella época no era capaz de trasladar a la práctica sus acertados conceptos; pero una de sus invenciones, la máquina analítica, ya tenía muchas de las características de un ordenador moderno. Incluía una corriente, o flujo de entrada en forma de paquete de tarjetas perforadas, una memoria para guardar los datos, un procesador para las operaciones matemáticas y una impresora para hacer permanente el registro. Estaba hecha de hierro y se necesitaba una máquina de vapor y era muy cara. Cuando la Marina dejó de financiarle, Babbage nunca pudo terminar su máquina.

[editar] Máquina tabuladora

Durante la década de 1880 el estadístico estadounidense Herman Hollerith concibió la máquina tabuladora a partir de la idea de utilizar tarjetas perforadas, similares a las placas de Jacquard, para procesar datos. Hollerith consiguió compilar la información estadística destinada al censo de población de 1890 de Estados Unidos en sólo 2 años en vez de 13, que era lo que se estimaba. La máquina hacía pasar las tarjetas perforadas sobre contactos eléctricos para catalogarlas en diferentes cajones.

Más adelante, esta máquina evolucionó y pudo hacer operaciones matemáticas. Fue el principal negocio de IBM desde 1924, con Thomas John Watson

[editar] 1900-1940: computadoras analógicas

Por los 1900s las primeras calculadoras mecánicas, cajas registradoras, máquinas de contabilidad, entre otras se rediseñaron para utilizar motores electrónicos, con un engranaje de posición como la representación para el estado de una variable. Las personas eran computadoras, como un título de trabajo, y usaban calculadoras para evaluar expresiones.
Los nomogramas, como esta Carta de Smith, son un dispositivo de cálculo analógico para algunos tipos de problemas
Los nomogramas, como esta Carta de Smith, son un dispositivo de cálculo analógico para algunos tipos de problemas

Antes de la Segunda Guerra Mundial, los ordenadores analógicos eran lo más moderno de esa época, y muchos creían que sería el futuro de la informática.

Una máquina analógica representa cantidades mediante magnitudes físicas que pueden cambiar continuamente, como la tensión, la corriente, la velocidad de rotación de un eje, etc. Un ejemplo de esta máquina es el Integrador de agua, de 1936, que funcionaba con tuberías y cubos de agua etiquetados con una escala.

Este tipo de ordenadores permitía resolver problemas complejos que los digitales eran incapaces de procesar, ya que aún estaban en sus primeros intentos. En cambio, tenían el problema de la poca flexibilidad: tenían que ser reconfigurados (manualmente) para cada problema.

A medida que los digitales se hicieron más rápidos y con más memoria RAM, se vio que sí que era posible sustituir a los analógicos. Entonces nació el concepto de programación de ordenadores digitales tal como lo conocemos hoy en día, como un trabajo lógico y matemático más que de conexión y desconexión de tuberías y cables en una máquina.

También hubo ordenadores híbridos (magnitudes analógicas controladas por circuitos digitales), que se usaron mucho en los 1950 y 1960, y más tarde en aplicaciones específicas.

Algunas computadoras analógicas se usaban en el campo de la artillería, para ayudar a apuntar a un objetivo en los vehículos de combate o en otras armas. Un ejemplo es el bombardero Norden. Algunos de estos sistemas se siguieron usando mucho después de la Segunda Guerra Mundial.

Como las máquinas computadoras no eran muy comunes en esta época, algunos mecanismos se usaban mediante mecanismos en papel, como grafos y nomogramas (diagramas) que daban soluciones analógicas a algunos problemas, como la distribución de presiones y temperaturas en un sistema calefactor. Otro ejemplo es la Carta de Smith.

[editar] Siglo XX: primeras computadoras electrónicas

En los años 30, siendo presidente de IBM Mister Watson, un joven profesor de Harvard, llamado Howard Aiken, le presentó un nuevo diseño de la calculadora de Babbage. Al igual que Pascal diseñó la pascalina y Babbage añadió el manejo mediante cintas perforadas, Aiken sustituyó el mecanismo de vapor por electricidad y añadió el mecanismo de control de una centralita telefónica, de manera que la máquina seleccionara por sí sola las tarjetas perforadas. Aiken obtuvo fondos para su proyecto y construyó el Harvard Mark 1, de 3 metros de alto y 20 de largo, que estuvo funcionando hasta 1959.

Casi al mismo tiempo que Howard Aiken, en el Berlín de los años 30, un joven ingeniero aeronáutico de 26 años llamado Konrad Zuse construyó la primera computadora electromecánica binaria programable, la cual hacía uso de relés eléctricos para automatizar los procesos. Sin embargo, tan sólo fabricó un prototipo para pruebas al cual llamó Z1. Este prototipo nunca llegó a funcionar debido a la falta de perfeccionamiento en sus elementos mecánicos.

En 1940 Zuse terminó su modelo Z2, la cual fue la primera computadora electromecánica completamente funcional del mundo. Al año siguiente, en 1941, fabricó su modelo Z3 para el cual desarrolló un programa de control que hacía uso de los dígitos binarios. No obstante, esta computadora fue destruida en 1944 a causa de la guerra. Konrad Zuse se había basado para el diseño de sus computadores en los recientes trabajos de Alan Turing. Luego llegó el Z4, que necesitaba 20 metros cuadrados y pesaba 2 toneladas. En plena Segunda Guerra Mundial, la Z4 estaba en peligro y fue desmontada pieza a pieza y llevada a un lugar seguro. Entre 1945 y 1946 creó el Plankalkül (Plan de Cálculos), el primer lenguaje de programación de la historia y predecesor de los lenguajes modernos de programación algorítmica.
ENIAC
ENIAC

Durante la Segunda Guerra Mundial (1939-1945), un equipo de científicos y matemáticos que trabajaban en Bletchley Park, al norte de Londres, crearon lo que se consideró el primer ordenador digital totalmente electrónico: el Colossus. Hacia diciembre de 1943 el Colossus, que incorporaba 1.500 válvulas o tubos de vacío, era ya operativo. Fue utilizado por el equipo dirigido por Alan Turing para descodificar los mensajes de radio cifrados de los alemanes.

En 1939 y con independencia de este proyecto, John Atanasoff y el estudiante graduado Clifford Berry ya habían construido un prototipo de máquina electrónica en el Iowa State College (Estados Unidos). Estos investigadores desarrollaron la primera computadora digital electrónica entre los años de 1937 a 1942. Llamaron a su invento la computadora Atanasoff-Berry, o sólo ABC (Atanasoff Berry Computer).

Este prototipo y las investigaciones posteriores se realizaron en el anonimato, y más tarde quedaron eclipsadas por el desarrollo del Calculador e integrador numérico digital electrónico (ENIAC) en 1945. El ENIAC, que según mostró la evidencia se basaba en gran medida en el `ordenador' Atanasoff-Berry, obtuvo una patente que caducó en 1973, varias décadas más tarde.

El ENIAC contenía 18.000 válvulas de vacío y tenía una velocidad de varios cientos de multiplicaciones por minuto, pero su programa estaba conectado al procesador y debía ser modificado manualmente. Se construyó un sucesor del ENIAC con un almacenamiento de programa que estaba basado en los conceptos del matemático húngaro-estadounidense John von Neumann. Las instrucciones se almacenaban dentro de una llamada memoria, lo que liberaba al ordenador de las limitaciones de velocidad del lector de cinta de papel durante la ejecución y permitía resolver problemas sin necesidad de volver a conectarse al ordenador.

La computadora EDVAC, construida en la Universidad de Manchester, en Connecticut (EEUU), en 1949 fue el primer equipo con capacidad de almacenamiento de memoria e hizo desechar a los otros equipos que tenían que ser intercambiados o reconfigurados cada vez que se usaban.

Esta computadora fue construida por John Mauchly y J. Prespert Eckert, (participando también Von Neumann) quienes empezaron a trabajar en ella 2 años antes que la ENIAC empezara a operar. La idea era tener el programa almacenado en la computadora y esto fue posible gracias a que la EDVAC tenía una mayor capacidad de almacenamiento de memoria.

La memoria consistía en líneas de mercurio dentro de un tubo de vidrio al vacío, de tal modo que un impulso electrónico podía ir y venir en 2 posiciones, para almacenar los ceros (0) y unos (1). Esto era indispensable ya que en lugar de usar decimales la EDVAC empleaba números binarios

La Univac (Universal Atomic Computer), en 1951, fue la primera computadora comercial moderna. Este computador se utilizaba para el tratamiento de datos no científicos. Fue construida por la Remington Ran (Sperry Rand), compañía fundada por Eckert y Mauchly. La Univac fue la primera máquina capaz de aceptar y tratar o procesar datos alfabéticos y numéricos.

Las calculadoras mecánicas, cajas registradoras, máquinas de contabilidad, entre otras, se habían rediseñado para utilizar motores electrónicos, con un engranaje de posición como la representación para el estado de una variable. Las personas eran computadoras, como un título de trabajo, y usaban calculadoras para evaluar expresiones. Durante el proyecto Manhattan, el futuro Nobel Richard Feynman fue el supervisor de las computadoras humanas, muchas de las mujeres dedicadas a las matemáticas, que entendieron las ecuaciones matemáticas que estaban resolviéndose para el esfuerzo de guerra. Incluso el renombrado Stanislaw Marcin Ulman fue presionado por el servicio para traducir las matemáticas en las aproximaciones computables para la bomba de hidrógeno, después de la guerra. Durante la Segunda Guerra Mundial, los planes de Curt Herzstark para una calculadora de bolsillo mecánica, literalmente le salvaron la vida: Cliff Stoll, Scientific American 290, no. 1, pp. 92-99. (January 2004).
Transistores
Transistores

A finales de la década de 1950 el uso del transistor en los ordenadores marcó el advenimiento de elementos lógicos más pequeños, rápidos y versátiles de lo que permitían las máquinas con válvulas. Como los transistores utilizan mucha menos energía y tienen una vida útil más prolongada, a su desarrollo se debió el nacimiento de máquinas más perfeccionadas, que fueron llamadas ordenadores o computadoras de segunda generación. Los componentes se hicieron más pequeños, así como los espacios entre ellos, por lo que la fabricación del sistema resultaba más barata.
Circuito integrado
Circuito integrado

A finales de la década de 1960 apareció el circuito integrado (CI), que posibilitó la fabricación de varios transistores en un único sustrato de silicio en el que los cables de interconexión iban soldados. El circuito integrado permitió una posterior reducción del precio, el tamaño y los porcentajes de error. El microprocesador se convirtió en una realidad a mediados de la década de 1970, con la introducción del circuito de integración a gran escala (LSI, acrónimo de Large Scale Integrated) y, más tarde, con el circuito de integración a mayor escala (VLSI, acrónimo de Very Large Scale Integrated), con varios miles de transistores interconectados soldados sobre un único sustrato de silicio.

[editar] Generaciones de computadoras

Las computadoras actuales pasaron por varias etapas diferenciadas:


[editar] Texto de titular

[editar] Primera Generación
Artículo principal: Primera generación de computadoras

Computadoras constituidas por tubos de vacío, desprendían bastante calor y tenían una vida relativamente corta. Máquinas grandes y pesadas. A esta generación pertenece el ENIAC, el EDSAC y UNIVAC I entre otros. El almacenamiento de la información era en un tambor magnético interior. El tambor magnético se disponía en el interior del ordenador, recogía y memorizaba los datos y los programas que se le suministraban. La programación era en lenguaje máquina,ya que estas estaban construidas por largas cadenas de bits, de ceros y unos, por lo que la programación resultaba larga y compleja. Se usaban tarjetas perforadas para suministrar los datos y los programas. Estos ordenadores carecían de sistema operativo. En general, tenían un alto costo.

[editar] Segunda Generación
Artículo principal: Segunda generación de computadoras

Los tubos de vacío fueron sustituidos por los transistores (más económicos y más pequeños que las válvulas miniaturizadas), que consumían menos electricidad y producían menos calor. Por estos motivos, la densidad del circuito podía ser aumentada sensiblemente, lo que quería decir que los componentes podían colocarse mucho más cerca unos a otros y ahorrar mucho más espacio. Evolucionan los modos de direccionamiento y surgen los lenguajes de programación de más alto nivel. Algunos ordenadores de esta época son el UNIVAC 1004, el CDC 6600 y el PDP-1.

[editar] Tercera Generación
Artículo principal: Tercera generación de computadoras

Aparece el circuito integrado (chip). Aumenta la capacidad de almacenamiento y se reduce el tiempo de respuesta. Se generalizan los lenguajes de programación de alto nivel. Se consigue compatibilidad para compartir software entre diversos equipos. Aparece la posibilidad de trabajar en tiempo compartido. Pertenecen a estos años las máquinas UNIVAC 1100 y PDP-8.

[editar] Cuarta Generación
Artículo principal: Cuarta generación de computadoras

Surge el microcircuito integrado. Se construye el microprocesador: el proceso de reducción del tamaño de los componentes llega a operar a escalas microscópicas. La microminiaturización permite construir dicho microprocesador, circuito integrado que rige las funciones fundamentales del ordenador. Comienzan a proliferar las redes de computadores. Aparecen los sistemas operativos en red y distribuidos. Ordenadores de esta generación son el Cray-1, IBM PC, SPARC, etc.

[editar] La Quinta Generación
Artículo principal: Quinta generación de computadoras

Desarrollo de la Inteligencia Artificial. El propósito de la Inteligencia Artificial es equipar a las Computadoras con "Inteligencia Humana" y con la capacidad de razonar para encontrar soluciones. Otro factor fundamental del diseño, la capacidad de la computadora para reconocer patrones y secuencias de procesamiento que haya encontrado previamente (programación heurística) que permita a la computadora recordar resultados previos e incluirlos en el procesamiento.En esencia, la computadora aprenderá a partir de sus propias experiencias usará sus datos originales para obtener la respuesta por medio del razonamiento y conservará esos resultados para posteriores tareas de procesamiento y toma de decisiones. El conocimiento recién adquirido le servirá como base para la próxima serie de soluciones.

[editar]

Ordenador

La computadora, computador u ordenador es un sistema digital con tecnología microelectrónica es capaz de procesar datos a partir de un grupo de instrucciones denominado programa. La estructura básica de una computadora incluye microprocesador (CPU), memoria y dispositivos de entrada/salida (E/S), junto a los buses que permiten la comunicación entre ellos. En resumen la computadora es una dualidad entre hardware (parte física) y software (parte lógica), que interactúan entre sí para una determinada función.

La característica principal que la distingue de otros dispositivos similares, como una calculadora no programable, es que puede realizar tareas muy diversas cargando distintos programas en la memoria para que el procesador los ejecute.
Tabla de contenidos
[ocultar]

* 1 Sistema operativo
* 2 Uso actual del término
* 3 Tipos de computadoras
* 4 Cómo funcionan las computadoras
* 5 Usos de las computadoras
* 6 Etimología de las palabras ordenador y computadora
* 7 Véase también
* 8 Enlaces externos

[editar] Sistema operativo
Artículo principal: Sistema operativo

Una computadora, normalmente, utiliza un programa informático especial, denominado sistema operativo (SO), que ha sido diseñado, construido y probado para gestionar los recursos del computador: la memoria, los dispositivos de E/S, los dispositivos de almacenamiento (discos duros, unidades de DVD y CD), entre otros. Ver mas

[editar] Uso actual del término

Sin embargo, en los últimos veinte años aproximadamente muchos aparatos domésticos, sobre todo las consolas para videojuegos, las que hay que añadir los teléfonos móviles, los vídeos, los asistentes personales digitales (PDA) y un sinfín de aparatos caseros, industriales, para coches y electrónicos, tienen circuitos homologables a la máquina de Turing (con la limitación de que la programación de estos aparatos está instalada en un chip de memoria ROM que hay que remplazar cada vez que queremos cambiar la programación).

Esta especie de computadoras que se encuentran dentro de otras computadoras de uso general son conocidos como microcontroladores o computadores integrados. Por lo tanto, muchas personas han restringido la definición de computadora a aquellas máquinas cuyo propósito principal sea el procesamiento de información y que puedan adaptarse a una gran variedad de tareas, sin ninguna modificación física, excluyendo a aquellos dispositivos que forman parte de un sistema más grande como los teléfonos, microondas o aviones.

[editar] Tipos de computadoras
Una Apple iMac
Una Apple iMac

Tradicionalmente existen tres tipos de computadoras que cumplen con estos requisitos: las computadoras centrales, las minicomputadoras y las computadoras personales. Las minicomputadoras, como tales, ya no existen, habiendo sido reemplazadas por computadoras personales con programas especiales capaces de manejar y distribuir recursos entre múltiples usuarios, como por ejemplo programas para servicio de correo; las mismas computadoras centrales tienen características propias de la computadora personal, como el estar basadas en microprocesadores.es la herramienta nesesaria del computador para realizar sus tareas .

Para finalizar, hay que decir que mucha gente que no está familiarizada con otras formas de computadoras, usa el término para referirse exclusivamente a las computadoras personales.

[editar] Cómo funcionan las computadoras

Aunque las tecnologías empleadas en las computadoras digitales han cambiado mucho desde que aparecieron los primeros computadores en los años 40, la mayoría todavía utilizan la arquitectura von Neumann, propuesta a principios de los años 1940 por John von Neumann.

La arquitectura von Neumann describe un computador con 4 secciones principales: la unidad lógica y aritmética (ALU), la unidad de control, la memoria, y los dispositivos de entrada y salida (E/S). Estas partes están interconectadas por un conjunto de cables denominados buses.

En este sistema, la memoria es una secuencia de celdas de almacenamiento numeradas, donde cada una es un bit o unidad de información. La instrucción es la información necesaria para realizar lo que se desea con la computadora. Las «celdas» contienen datos que se necesitan para llevar a cabo las instrucciones, con la computadora. En general, la memoria puede ser rescrita varios millones de veces; se parece más a una libreta que a una lápida.
Vista expandida de una computadora 1: Monitor 2: Placa base 3: Procesador 4: Puertos ATA 5: Memoria principal (RAM) 6: Placas de expansión 7: Fuente eléctrica 8: Unidad de almacenamiento óptico 9: Disco duro 10: Teclado 11: Ratón
Vista expandida de una computadora
1: Monitor
2: Placa base
3: Procesador
4: Puertos ATA
5: Memoria principal (RAM)
6: Placas de expansión
7: Fuente eléctrica
8: Unidad de almacenamiento óptico
9: Disco duro
10: Teclado
11: Ratón
Disco duro
Disco duro
Monitor
Monitor

El tamaño de cada celda y el número de celdas varía mucho de computadora a computadora, y las tecnologías empleadas para la memoria han cambiado bastante; van desde los relés electromecánicos, tubos llenos de mercurio en los que se formaban los pulsos acústicos, matrices de imanes permanentes, transistores individuales a circuitos integrados con millones de celdas en un solo chip.

Con los circuitos electrónicos se simula las operaciones lógicas y aritméticas, se pueden diseñar circuitos para que realicen cualquier forma de operación.

La unidad lógica y aritmética, o ALU, es el dispositivo diseñado y construido para llevar a cabo las operaciones elementales como las operaciones aritméticas (suma, resta), operaciones lógicas (Y, O, NO), y operaciones de comparación. En esta unidad es en donde se hace todo el trabajo computacional.

La unidad de control sigue la dirección de las posiciones en memoria que contienen la instrucción que la computadora va a realizar en ese momento; recupera la información poniéndola en la ALU para la operación que debe desarrollar. Transfiere luego el resultado a ubicaciones apropiadas en la memoria. Una vez que ocurre lo anterior, la unidad de control va a la siguiente instrucción (normalmente situada en la siguiente posición, a menos que la instrucción sea una instrucción de salto, informando a la computadora de que la próxima instrucción estará ubicada en otra posición de la memoria).

Los dispositivos E/S sirven a la computadora para, obtener información del mundo exterior y devolver los resultados de dicha información. Hay una gama muy extensa de dispositivos E/S como los teclados, monitores y unidades de disco flexible o las cámaras web.

Las instrucciones que acabamos de discutir, no son las ricas instrucciones del ser humano. Una computadora sólo se diseña con un número limitado de instrucciones bien definidas. Los tipos de instrucciones típicas realizadas por la mayoría de las computadoras son como estos ejemplos: "...copia los contenidos de la posición de memoria 123, y coloca la copia en la posición 456, añade los contenidos de la posición 666 a la 042, y coloca el resultado en la posición 013, y, si los contenidos de la posición 999 son 0, tu próxima instrucción está en la posición 345...".

Las instrucciones dentro de la computadora se representan mediante números. Por ejemplo, el código para copiar puede ser 001. El conjunto de instrucciones que puede realizar una computadora se conoce como lenguaje de máquina o código máquina. En la práctica, no se escriben las instrucciones para las computadoras directamente en lenguaje de máquina, sino que se usa un lenguaje de programación de alto nivel que se traduce después al lenguaje de la máquina automáticamente, a través de programas especiales de traducción (intérpretes y compiladores). Algunos lenguajes de programación representan de manera muy directa el lenguaje de máquina, como los ensambladores (lenguajes de bajo nivel) y, por otra parte, los lenguajes como Java, se basan en principios abstractos muy alejados de los que hace la máquina en concreto (lenguajes de alto nivel).

Las computadoras actuales colocan la ALU y la unidad de control dentro de un único circuito integrado conocido como Unidad central de procesamiento o CPU. Normalmente, la memoria de la computadora se sitúa en unos pocos circuitos integrados pequeños cerca de la CPU. La gran mayoría de la masa de la computadora está formada por sistemas auxiliares (por ejemplo, para traer electricidad) o dispositivos E/S.

Algunas computadoras más grandes se diferencian del modelo anterior, en un aspecto importante, porque tienen varias CPU y unidades de control que trabajan al mismo tiempo. Además, algunas computadoras, usadas principalmente para la investigación, son muy diferentes del modelo anterior, pero no tienen muchas aplicaciones comerciales.

Por lo tanto, el funcionamiento de una computadora es en principio bastante sencillo. La computadora trae las instrucciones y los datos de la memoria. Se ejecutan las instrucciones, se almacenan los datos y se va a por la siguiente instrucción. Este procedimiento se repite continuamente, hasta que se apaga la computadora. Los Programas de computadora (software) son simplemente largas listas de instrucciones que debe ejecutar la computadora, a veces con tablas de datos. Muchos programas de computadora contienen millones de instrucciones, y muchas de esas instrucciones se ejecutan rápidamente. Una computadora personal moderna (en el año 2003) puede ejecutar de 2000 a 3000 millones de instrucciones por segundo. Las capacidades extraordinarias que tienen las computadoras no se deben a su habilidad para ejecutar instrucciones complejas. Las computadoras ejecutan millones de instrucciones simples diseñadas por personas inteligentes llamados programadores. Los buenos programadores desarrollan grupos de instrucciones para hacer tareas comunes (por ejemplo, dibujar un punto en la pantalla) y luego ponen dichos grupos de instrucciones a disposición de otros programadores.

En la actualidad, podemos tener la impresión de que las computadoras están ejecutando varios programas al mismo tiempo. Esto se conoce como multitarea, siendo más usado el segundo término. En realidad, la CPU ejecuta instrucciones de un programa y después tras un breve periodo de tiempo, cambian a un segundo programa y ejecuta algunas de sus instrucciones. Esto crea la ilusión de que se están ejecutando varios programas simultáneamente, repartiendo el tiempo de la CPU entre los programas. Esto es similar a la película que está formada por una sucesión rápida de fotogramas. El sistema operativo es el programa que controla el reparto del tiempo generalmente.

El sistema operativo es una especie de caja de herramientas lleno de rutinas. Cada vez que alguna rutina de computadora se usa en muchos tipos diferentes de programas durante muchos años, los programadores llevarán dicha rutina al sistema operativo, al final.

El sistema operativo sirve para decidir, por ejemplo, qué programas se ejecutan, y cuándo, y qué fuentes (memoria o dispositivos E/S) se utilizan. El sistema operativo tiene otras funciones que ofrecer a otros programas, como los códigos que sirven a los programadores, escribir programas para una máquina sin necesidad de conocer los detalles internos de todos los dispositivos electrónicos conectados.

En la actualidad se están empezando a incluir dentro del sistema operativo algunos programas muy usados debido a que es una manera económica de distribuirlos. No es extraño que un sistema operativo incluya navegadores de internet, procesadores de texto, programas de correo electrónico, interfaces de red, reproductores de películas y otros programas que antes se tenían que conseguir aparte.

[editar]

10 octubre 2006

Historia de Nintendo

La historia de Nintendo se remonta a hace más de 120 años. En aquellos tiempos fabricaban a mano barajas de cartas japonesas llamadas hanafuda. En 1950, Hiroshi Yamauchi, nieto de Fusajiro Yamauchi y futuro presidente de Nintendo, hizo un trato con Disney para producir cartas de juego con sus personajes. Por aquel entonces Nintendo comenzaba a producir cartas occidentales además de hanafuda. Ya desde sus inicios resultaba claro que Nintendo se concentraba en productos de entretenimiento. Las cartas de Disney vendieron millones de mazos, y otorgaron a Nintendo suficientes ganancias como para invertir en nuevos negocios, en particular en el de los juguetes.
Hacia finales de la década de 1970, Nintendo había comenzado a ceder terreno en el mercado de los juegos electrónicos frente a fabricantes como Bandai, y respondieron con la ray gun, que permitía disparar a objetos y en los 80´s con la serie Nintendo Game & Watch (máquinas con pantallas LCD con un juego cada una), creada por el visionario Gunpei Yokoi, junto con una serie de juegos arcade. Fueron las pioneras de las actuales consolas portátiles. En 1980, Minoru Arakawa crea Nintendo of América. Nintendo Game & Watch, Donkey Kong (1982) Nintendo Game & Watch, Donkey Kong (1982)

El joven Shigeru Miyamoto, creó en los años 1980 las franquicias más famosas de los videojuegos: Mario, Donkey Kong, The Legend of Zelda, etc. Tanta popularidad crea el juego Donkey Kong que Nintendo decide crear la Famicom. Después del rotundo éxito que obtuvo en Japón se decide lanzarla en el resto del mundo en 1985 , donde se la conoce como "Nintendo Entertainment System" (NES). A la NES se le atribuye el hecho de “salvar” la industria de los videojuegos tras la gran crisis de 1983 y ser la primera videoconsola que fuera realmente exitosa para su fabricante. Se cree que vendió aproximadamente 60 millones de consolas, sin contar los periféricos y juegos que se vendieron posteriormente (para hacerse una idea de lo increíble de este dato, se debe tener en cuenta la diferencia del mercado que había por aquel entonces con el actual; si actualmente una consola vendiera 60 millones de ejemplares sería un gran éxito, pero en aquel entonces eso era algo increíble).

Esta consola incorporó uno de los primeros controles tal y como se conocen hoy en día.
Con la NES aparecieron grandes joyas de los videojuegos: las series "Super Mario (1983)", "The Legend of Zelda (1986)", "Donkey Kong", "Mega Man", "Metal Gear" o "Final Fantasy", por destacar algunos de los más influyentes.
Esta consola tuvo prácticamente la total exclusividad de la gran mayoría de juegos exitosos del momento, pues obligaba a las empresas que desarrollaban sus juegos a mantenerse fieles a ella y no ceder sus obras a otras plataformas.

En los años siguientes su coste de fabricación se abarató, pero su fama no disminuyó, tornándose un negocio realmente rentable.

De ese modo Nintendo creció enormemente durante años y la NES logró aguantar durante casi una década a nuevas consolas más potentes tecnológicamente que ella.

Los únicos problemas que se le atribuyen es el haber implantado durante algunos años un monopolio en el mercado de la creación de juegos, lo que prejudicó especialmente a Sega.

También se critica el haber sido una de las consolas más pirateadas (después de la Sony PlayStation). En verdad los jugadores tuvieron mucho menos acceso a juegos piratas que durante la era de la PlayStation 1 y 2, porque la NES usaba cartuchos y las personas no contaban con los medios necesarios para piratearla.
Su piratería comenzó principalmente en sus últimos años y realizada por personas especializadas en la copia de cartuchos. Al haber sido una consola que durara tanto tiempo en el mercado, se dio tiempo incluso a que se crearan versiones piratas de la mismísima consola (principalmente provenientes de China) contra las cuales Nintendo no logró hacer frente.

Poco después de la NES, presentan la primera consola portátil, la famosísima Game Boy, obra del ya mencionado Gunpei Yokoi, en 1989. Esta consola conseguiría eliminar a todas sus competidoras incluso siendo muchísimo menos potente que sus rivales e incluso careciendo de color. Nintendo llegaría a vender 60 millones de estas consolas. El éxito se debió en gran parte a la cantidad y variedad de juegos que se desarrollaron para Game Boy y al escaso consumo eléctrico frente a sus competidoras. Otra de sus bazas fue el hecho de que cabía en un bolsillo y suponía un pequeño desembolso para los compradores.

En 1991, lanzaron la Super Famicom, conocida en el mercado occidental como Super Nintendo Entertainment System (SNES), arrasando en todo el mundo, pues tenían millones de seguidores gracias a la NES. Con la llegada de la nueva consola, Nintendo realizó auténticas obras maestras: "Super Mario World" (1991), "Super Mario Kart", "The Legend of Zelda: A Link to the Past", "Pilotwings", "Mario Paint" (1992), "Super Metroid", "Starfox", "Donkey Kong Country" (1994), "Yoshi's Island", "EarthBound" o "Killer Instinct" (1995) entre otros.

Nintendo tuvo muchísimo tiempo y calma para diseñar esta consola, la cual en el momento de su lanzamiento contaba con una potencia extraordinaria y superior a sus competidoras, a pesar de que pronto fue superada tecnológicamente por otras consolas que a pesar de ello no lograron tener éxito. Sus bazas como de costumbre en Nintendo fueron la gigantesca variedad de juegos de una calidad cada día en aumento, el barato precio de fabricación y venta de la SNES, la fama ya obtenida por la empresa y la facilidad que suponía para los desarrolladores de los juegos, programar para esta consola.

Cabe destacar la enorme rivalidad que surgió por aquel entonces entre Sega y Nintendo, pues Sega, durante el tiempo en que Nintendo exprimía al máximo su NES, fue creciendo y ganando seguidores hasta conseguir estar a la par con Nintendo. Poco antes del lanzamiento de la SNES, Sega había lanzado la Sega Genesis, también llamada Mega Drive, que fue la única rival de Nintendo. Sega y Nintendo por aquel entonces tenían una rivalidad jamás vista antes y después en el mundo de los videojuegos y crearon por aquel entonces las mayores y más célebres obras jamás realizadas en el campo de los juegos electrónicos. Cada vez que Nintendo sacaba un nuevo juego, Sega lo superaba y viceversa. Tras algún tiempo de rivalidad, Sega siguió la política de crear caros y avanzados periféricos, mientras que Nintendo siguió creando juegos cada vez mejores. Actualmente se cree que Nintedo fue quien acertó en su política pues vendió el doble de Super Nintendo que Sega de Mega Drive. Actualmente Sega coopera con Nintendo creando juegos para sus consolas. Esa fue la era de esplendor de las consolas de 16 bits y probablemente para cualquier “jugón", la época de esplendor de los videojuegos.

Prueba va!

Otra prueba más y mira que bonito que me ha de quedar, pues.
adasd
asd
as
d
asd

POST DE PRUEBA

Este es un post de prueba. Como diría alguien:

Entre comillas digo muchas cosas pero fuera dios dirá.

Ahora de Color y luego un linkazo.

No se si con una imagen mejora algo:



Pues igual no!!!!